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The Effect of Exchange Rates

on Statistical Decisions
Mark J. Schervish, Teddy Seidenfeld,
and Joseph B. Kadane*y

Statistical decision theory, whether based on Bayesian principles or other concepts such
as minimax or admissibility, relies on minimizing expected loss or maximizing expected
utility. Loss and utility functions are generally treated as unit-less numerical measures of
value for consequences. Here, we address the issue of the units in which loss and utility
are settled and the implications that those units have on the rankings of potential deci-
sions. When multiple currencies are available for paying the loss, one must take explicit
account of which currency is used as well as the exchange rates between the various
available currencies.

1. Introduction. Normative decision theory, and in particular statistical de-
cision theory, is generally based on minimizing a quantitative loss function
or maximizing a quantitative utility function, which is itself a unit-less rep-
resentation of values for outcomes. Such representations result from the fa-
miliar axiomatic derivations of subjective expected utility theory ðsee, e.g.,
Savage 1954; Anscombe and Aumann 1963Þ. There is also minimax theory
ðWald 1950Þ, wherein the decision maker chooses an option so as minimize,
over all feasible options, the maximum, over states, of the loss. Minimax
theory and others assume the existence of a loss function without address-
ing the issue of in what, if any, units the loss is measured.
What are the effects of not being careful about the units in which losses

and gains are realized when outcomes are in terms of one set of prizes rather
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than another? Example 1 is a toy example that will be extended to illustrate
a problem that arises whenever one is not careful about how a loss function

EXCHANGE RATES AND STATISTICAL DECISIONS 505
is actually paid. The example and its extensions will raise serious issues that
need to be addressed about whether the loss function is measured in pure
numbers or in units with intrinsic values.
Although we focus primarily on statistical decision theory in this article,

the issues raised by example 1 and its extensions have wide-ranging conse-
quences in philosophy whenever uncertainty is connected with decision mak-
ing. For instance, the issues affect how the criterion of coherence ðavoid-
ing sure loss when bettingÞ regulates rational degrees of belief ðShimony
1955Þ. The same issues affect how bargaining theory ðe.g., the Nash bar-
gaining solutionÞ may regulate ethical standards of fairness ðBraithwaite
1955; Harsanyi 1977Þ.

EXAMPLE 1. Let fE; ECg be a partition into two complementary events, E
and not-E ðdenoted ECÞ, sufficient for formulating the following decision
The
problems. Let D5 fd1; d2g be the set of feasible options with a loss func-
tion given by the following table:

E EC

d .5 2.0
minimax decision

This conten
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d2
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t downloaded from 12
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8.237.117.244 on Mon,
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1.0
be to choose d2 since
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 r to

1,
 e m
 oss
whereas th aximum l
n who uses a prior distribution w
the maximum loss is for choosing d1 is 2.
Also, a naive Bayesia ith Pr ðEÞ5 PrðECÞ
5 0:5 will make the same decision since the expected loss for choosing d1

is 1.25, while the expected loss for choosing d2 is 1.
In this article, we take seriously the question, “In what units will the agent

in example 1 ðand every other decisionproblemwith a loss functionÞ be charged
the stated loss?” There are two natural answers to this question, both of
which will be illustrated in versions of example 1, and neither of which is
handled in a satisfactory fashion by the popular methods used in statistical
decision theory.
Two natural assumptions about the units in which an agent pays a loss

function are:

iÞ The agent must pay an amount of some commodity or currency of
value equal to the numerical value of the loss function.

iiÞ For each combination of decision and state of nature, the agent must
pay a specified amount of some commodity or currency. The agent
has a cardinal utility function over amounts of said commodity or
currency, and the numerical values of the loss function encode the
agent’s loss of utility from losing the specified amount of com-
 9 Dec 2013 12:12:31 PM
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modity/currency in each of the combinations of decision/state of
nature.

506 MARK J. SCHERVISH ET AL.
There is a third assumption that we will not pursue in this article, namely,
that no loss is paid by the agent, and the loss function is just a mathematical
construct with no operational meaning.
Assumption ii is a generalization of i, in the sense that the two are

essentially the same if the agent’s utility is linear in the units of the com-
modity/currency. The problems that arise for both interpretations are easily
illustrated by extensions of example 1. First, consider assumption i.

EXAMPLE 2. In example 1, suppose that the loss is paid in a currency C1,
while there is an alternative currency C2 whose exchange rate with C1 is
The
given as follows:

• On event E, one unit of C1 is worth two units of C2.
C
• On event E , one unit of C1 is worth 0.5 units of C2.
Suppose that the minimax decision maker prefers to think in units of
C2. The loss function from example 1, converted to units of C2, is
E EC
d 1.0 1.0
minimax decision
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regardless of the units in which losses occur results in inconsistent decision
making. If the naive Bayesian in example 1 calculates expected loss inde-
pendent of the currency, he or she will make the same choices as the mini-
max decision maker. With currency C2, the expected losses for decisions d1

and d2 are 1.0 and 1.25, respectively.
The seemingly inconsistent decisions in examples 1 and 2 arise from a

failure to account for the varying values of one unit of loss from state to
state. The minimax theory explicitly treats one unit of loss as being equally
important in every state. But the state-dependent exchange rate makes it
clear that one unit of loss cannot be equally valuable in both states for both
currencies. The minimax decision maker either needs to guarantee that one
unit of loss means the same thing in every state or needs explicitly to take
into account the varying value of one unit of loss.
Axiomatic derivations of decision theory ðe.g., Savage 1954; Anscombe

and Aumann 1963Þ make assumption ii explicit by encoding the decision
maker’s values through a unit-less, real-valued utility function. These der-
ivations derive the utility by giving privileged status to a particular set of
13 12:12:31 PM
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constant acts. These constant acts purport to serve as utility theory’s “rigid
rods” ðor numeraires, in the language of mathematical financeÞ for measur-

EXCHANGE RATES AND STATISTICAL DECISIONS 507
ing both preference and uncertainty across states of uncertainty. The problem
with applying either the theory of Anscombe and Aumann ð1963Þ or the the-
ory of Savage ð1954Þ in examples 1 and 2 is the choice of numeraire. Either
currencyC1 orC2 can play the role of numeraire, but the mere presence of the
other currency violates an assumption of each of the subjective expected util-
ity theories. This violation prevents the identification of a unique represen-
tation of an agent’s preference in terms of a single probability and a single
utility. The same problem arises when applying bargaining theory in the ser-
vice of ethics, as in the works of Braithwaite ð1955Þ and Harsanyi ð1977Þ. As
we explain in section 2, a more general expected utility theory is needed to
allow for relative values that change from event to event. Unfortunately, the
more general theory makes it clear why it is not possible to compare nu-
merical utility values from one event to the next. For example, regardless of
which of the two loss functions ðin examples 1 and 2, respectivelyÞ corre-
sponds to an agent’s cardinal utility, d2 costs the agent twice as much as d1

costs when E occurs. Similarly, d1 costs twice as much as d2 costs when EC

occurs in both examples. What we cannot say is whether d1 costs more or
less when E occurs than when EC occurs. Such comparisons are not avail-
able because they are confounded with the probabilities of the events E and
EC. Another extension of example 1 will illustrate this.

EXAMPLE 3. Suppose that the agent in examples 1 and 2 faces a collection
of decision problems, including the one described in those examples. The
It sh
expe
payments that the agent will be charged will be either one unit of currency
C1 or one unit of currency C2. Using assumption i to explain what the loss
function measures, the decision problem in examples 1 and 2 corresponds
to the agent paying one unit of currency C2 if decision d1 is made ðregard-
less of whether E or EC occursÞ and one unit of currencyC1 if decision d2 is
made ðregardless of whether E or EC occursÞ. The different versions of the
loss function in those two examples correspond to different choices of the
numeraire. In example 1, the number 1 stands for one unit of C1 in both
events, while in example 2, the number 1 stands for one unit of C2 in both
events. Suppose that the naive Bayesian who used probability Pr ðEÞ5 Pr
ðECÞ5 0:5 in example 1 were to change the probability to PrðEÞ5 0:2
and PrðECÞ5 0:8 in example 2. The expected losses in example 2 would
now be 1 for d1 and 0.8 for d2. Not only would the agent choose d2 in both
examples, but the ratio of the two expected losses is 0.8 in both examples.

ould come as no surprise that changing the probability used to compute
cted loss might change the chosen decision. What happens in exam-
ple 3 is actually characteristic of every statistical decision problem. When
one changes the numeraire ði.e., what counts as one unit of lossÞ, then there
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is a corresponding change to the probability over the states of nature that
will preserve all statistical decisions. We extend example 1 again to illustrate

508 MARK J. SCHERVISH ET AL.
this.

EXAMPLE 4. There are a total of 16 decision problems involving two deci-
sions, the two events ðE and ECÞ, and the two prizes ðone unit of either cur-

rencyÞ that can be distinguished by what the agent must pay. For this ex-
ample, we make assumption ii, to explain what the loss function measures,
in order to show that the phenomenon of example 3 does not depend on as-
sumption i. Denote the loss from paying one unit of currency i ði5 1; 2Þ by
Lði, EÞ or Lði, ECÞ, depending on which event occurs. The loss function for
each of the 16 decision problems corresponds to a table similar to those in
examples 1 and 2. For decision dj ð j5 1; 2Þ, let ijðFÞ denote the currency
that the agent must pay ðone unitÞ if he or she makes decision dj and event
F ðeither E or ECÞ occurs. Then the 16 loss functions all have the form:

E EC

d Lði ðEÞ, EÞ Lði ðECÞ, ECÞ
Suppose

This co
1

d2
the agent c

ntent downloaded from
All use subje
1

Lði2ðEÞ, EÞ
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 128.237.117.244 on Mon, 9 Dec 
ct to JSTOR Terms and Condition
1

Lði2ðECÞ, ECÞ
th a probabil-
that
 ombines th
 ss function wi

rðE
 5 PrðECÞ
 agent chooses
Þ and 12 p . Then, the
ity p5 P d1 if
pLði1ðEÞ;EÞ1 ð12 pÞLði1ðECÞ;ECÞ
< pLði2ðEÞ;EÞ1 ð12 pÞLði2ðECÞ;ECÞ ð1Þ

He or she chooses d2 if the opposite inequality holds, and either decision
is optimal if the inequality becomes equality.

What we show next is that, no matter how the agent specifies Lð�; �Þ and
p ðso long as p is neither 0 nor 1Þ, there are infinitelymany alternative choices
that lead to identical decisions in all 16 decision problems simultaneously.
That is, ð1Þ holds for one choice of L and p if and only if it holds for all of
the other choices. Each choice of L and p corresponds to a different choice
of numeraire. Let cE and cEC be two strictly positive finite numbers. Replace
L by L0ði;FÞ5 Lði;FÞ=cF for i ∈ f1; 2g and F ∈ fE;ECg. Let m5 pcE 1
ð12 pÞcEC . Replace p by q5 pcE=m so that 12 q5 ð12 pÞcEC=m. It is
simple to see that ð1Þ holds if and only if

qL0ði1ðEÞ;EÞ1 ð12 qÞL0ði1ðECÞ;ECÞ
< qL0ði2ðEÞ;EÞ1 ð12 qÞL0ði2ðECÞ;ECÞ: ð2Þ

Indeed, the two sides of ð2Þ are merely 1=m times the corresponding sides
of ð1Þ. Example 3 corresponds to using cE 5 0:5, cEC 5 2, and p5 0:5 to
transform the loss table in example 1.
2013 12:12:31 PM
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The important point to learn from example 4 is that the relative values
of losses on disjoint events are hopelessly confounded with the probabilities

EXCHANGE RATES AND STATISTICAL DECISIONS 509
of those events. It is meaningless to compare the numerical values of the
losses that arise on different events without reference to the probabilities.
We can rescale the loss function to make the ratio of losses ðeven for the
same paymentÞ on different events to be any positive finite value we want,
without affecting what decisions an agent will make, so long as we modify
the probabilities accordingly. Similarly, we can modify the probabilities of
any event E ðexcept one whose probability is either 0 or 1Þ so that Pr ðEÞ=
PrðECÞ is anything we want. None of this invalidates subjective expected
utility theory, as we show in section 2. However, it is difficult to justify treat-
ing probability values ðother than 0 and 1Þ as if they had meanings indepen-
dently of the utility ðor lossÞ function. Similarly, the utility function values do
not have meaning independently of the probabilities of events. Rubin ð1987Þ
raised this issue, but exploration of its implications has been limited in the
years since. This interaction between the state-dependent value of prizes
and a rational agent’s degrees of belief also affects the traditional Dutch
Book betting arguments that equate a decision maker’s coherent fair-betting
rates with the decision maker’s confirmation function ðShimony 1955Þ.
The examples in this section are simplified decision problems in which

some subtle issues have been avoided:

1. How shall we formalize a global utility function that applies simul-
taneously across different numeraires?

2. What may serve as a numeraire for formulating gambles, and how is
the exchange rate between numeraires related to the decision maker’s
uncertainty over states?

3. Can preferences be elicited by special loss functions, for example,
using scoring rules, in order to identify the decision maker’s quan-
titative degrees of belief—where degrees of belief are epistemic states
that are not indexed by the units in which prizes are given?

In this article, we provide a general theory to answer these questions and
others that we identify later on. However, our positive approach does not
salvage the inconsistent decisions generated by the minimax theory or by the
naive Bayesian’s analysis, where the decision maker’s uncertainty is repre-
sented by a probability that ignores the units associated with prizes.
In sections 2 and 3, we address the first two questions in considerable

generality. We show how a general theory of maximizing expected utility
takes explicit account of the conversion from currencies and commodities
of value into pure utility values. We focus on the state-dependent relative
values between various currencies and commodities to which attention must
be paid in order to avoid inconsistencies like those displayed in examples 1
This content downloaded from 128.237.117.244 on Mon, 9 Dec 2013 12:12:31 PM
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and 2. Also, in many applications, utility functions are not linear in every
currency. We address this in section 4.

510 MARK J. SCHERVISH ET AL.
Under the theory developed here, in general there is no unique subjective
probability that the Bayesian can use in all decision problems without re-
gard to how losses are paid. However, as considered in section 5, we give
conditions under which the same decision will be made, regardless of which
of several currencies is used for paying the loss. In this connection, in sec-
tion 6 we investigate elicitation and question 3 ðaboveÞ. We consider special
decision problems in which a decision maker is asked to provide a subjec-
tive expected value for some random variable. For instance, the decision
maker’s degree of belief about an event E is his or her expected value of
the indicator function for E. This is the area in which the state-dependent
theory has its most striking consequences. The idea common in the work of
De Finetti ð1974Þ on Brier score and the more general analysis of proper
and consistent scoring rules of Savage ð1971Þ and Gneiting ð2011a, 2011bÞ
is that one may elicit a decision maker’s degrees of belief about specific
random quantities ði.e., the indicator function for EÞ by providing the deci-
sion maker with incentive-compatible losses for the elicitation. However,
as we show, this approach needs to be tempered by the realization that the
elicited probability is just one of many that form part of a state-dependent
expected utility representation of the same preference ordering. We show
how the choice of unit for applying the scoring rule affects the elicitation.
That is, we show where state-dependent utilities create strategic aspects for
elicitation, even with proper/consistent scoring rules.

2. State-Dependent Utility. Let Q be a set of states of nature, that is, any
partition of the sure event. In a typical mathematical presentation, Q would
have a σ-field A of subsets. Measurable real-valued functions defined on Q
are called random variables. Elements ofA are called events, and we allow
ourselves the convention of denoting the indicator function of an event A
by the name of the event itself. If P is a probability on ðQ;AÞ and X is a
random variable, we will allow ourselves the convention of letting PðX Þ
stand for the expected value of X under P; ∫Q X ðqÞ dPðqÞ.
Let R be a set of fortunes for a decision maker with σ-field B of subsets.

AVon Neumann–Morgenstern lottery ðNM lotteryÞ L is a stipulated prob-
ability distribution ðauxiliary randomizationÞ over the setR. LetH be a set
of functions from Q to the NM lotteries. ðSee Von Neumann and Morgen-
stern ½1947� for a discussion of how NM lotteries figure in the axiomatic
derivation of decision theory.Þ An element H of H is called a horse lottery,
following Anscombe and Aumann ð1963Þ. There is one special element of
R that we will call status quo. It stands for the current fortune of a decision
maker at the point when he or she is being asked to make the next decision.
This content downloaded from 128.237.117.244 on Mon, 9 Dec 2013 12:12:31 PM
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We assume that, in every state q there is some fortune better than status quo
and some fortune worse than status quo.

EXCHANGE RATES AND STATISTICAL DECISIONS 511
Anscombe and Aumann ð1963Þ prove that an agent’s preferences among
simple horse lotteries satisfy some seemingly innocuous conditions, if and
only if they can be represented by a unique probability/utility pair. That is,
the conditions hold if and only if there is a unique probability P and a
unique utility, a bounded function U : R→ R, with the following property.
The agent prefers H2 to H1 if and only if

P½UðH1Þ� < P½UðH2Þ�: ð3Þ

When L is an NM lottery, the meaning of UðLÞ is ∫RUðvÞ dLðvÞ. Savage
ð1954Þ gives an alternative derivation of an expected-utility representation
of preference. See Fisburn ð1970Þ for an overview of several derivations of
expected utility theory.
One of the seemingly innocuous conditions of Anscombe and Aumann

ð1963Þ implies that, almost surely, the relative values of fortunes remain
the same as the state of nature changes ðstate independenceÞ. This condi-
tion is violated when the fortunes involve different currencies whose values
can vary from state to state with positive probability. Without that state-
independence condition, the uniqueness of the probability/utility represen-
tation is lost, and the utility function must be a more general object of the
form to be defined in definition 1 below.

EXAMPLE 5. Let Q5 f1; 2g. Suppose that $1 can be exchanged cost-free

for €0.7 in state 1 and that $1 can be exchanged cost-free for €0.6 in state 2.

State
Suppose also that utility is continuous and increasing in both currencies
but is not necessarily linear in either currency. Finally, suppose that a state-
independent utility representation for preference, as in ð3Þ, gives each state
probability 0.5. Let Uð€0:6Þ5 a, Uð€0:7Þ5 b, and Uð$1Þ5 c. Then c5
0:5a1 0:5b, and a < c < b. Let x be the number of euros that has value
c; that is, Uð€xÞ5 c. Then 0:6 < x < 0:7. The state-independent utility
representation would assign expected utility c to the horse lottery H that
gives $1 in state 1 and €x in state 2. But this is unsatisfactory since H is the
same as $1 in state 1 and H is strictly more valuable than $1 in state 2,
which has positive probability.

-independent utility representations such as ð3Þ are not capable of rep-

resenting preferences when the relative values of fortunes vary from state to
state. Hence, we introduce the usual generalization to handle such cases. ðSee
Rubin ½1987� for one derivation.Þ
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DEFINITION 1 ðState-Dependent UtilityÞ. Let P be a collection of mutually
absolutely continuous probabilities on Q. Suppose that, for each P ∈ P,

Thro
follo

512 MARK J. SCHERVISH ET AL.
there is a utility function UP: Q � R→ R with the following properties.

• For all P,
P½sup
v

UPð�; vÞj j� < `: ð4Þ

• For every P1; P2 ∈ P,

UP2ðq; vÞ5 c1;2UP1ðq; vÞ
dP1

dP2

ðqÞ1 t1;2ðqÞ; ð5Þ

almost surely, where c1;2 > 0 is a scalar that can depend on P1 and P2 but
nothing else, t1;2 is some P2-integrable function of q, and dP1=dP2 is the
Radon-Nikodym derivative of P1 with respect to P2.

The collection fðP;UPÞ:P ∈ Pg is called a state-dependent expected
utility representation of preference over H. We say that a horse lottery H
has state-independent values under UP if UPðq;HðqÞÞ is constant as a func-
tion of q.

EXAMPLE 6. Every state-independent expected utility representation of pref-
erence extends in a simple fashion to a state-dependent utility. Let P be a

probability and let U be a bounded function such that the agent prefers
H2 to H1 if and only if ð3Þ. Let P consist of all probabilities that are mu-
tually absolutely continuous with respect to P. For each Q ∈ P, define

UQðq; vÞ5 UðvÞ dP
dQ

ðqÞ:

It is straightforward to see that fðQ;UQÞ:Q ∈ Pg satisfies definition 1 with
c1;2 5 1 and t1;2ð�Þ; 0.

ughout this article, we assume that P is as large as possible in the
wing sense. If P1 ∈ P and P2 is mutually absolutely continuous with P1,
then P2 ∈ P. This causes no loss of generality because UP2 is easily con-
structed from ð5Þ. We will also suppress the “almost surely” qualification in
equations and formulas that involve Radon-Nikodym derivatives since all
probabilities in P have the same zero-probability sets.
Condition ð4Þ in definition 1 is the state-dependent analog of the re-

quirement that a utility is a bounded function. Even if someUP are bounded,
the conversion equation ð5Þ allows otherUP to be unbounded. Because each
utility can be multiplied by a positive constant without changing the repre-
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sentation of preference, ð4Þmeans that all expected utilities can be bounded
by a common bound. Technically, the condition that utilities are bounded

EXCHANGE RATES AND STATISTICAL DECISIONS 513
arises as a consequence of such derivations as Savage ð1954Þ. If one skips
the derivation of expected utility and simply adopts a probability/utility pair
ðP, UÞ as in example 6, one need not assume that U is bounded, so long as
one can guarantee that the expected utilities of all horse lotteries are finite.
This would require restrictions on the set H of horse lotteries.

EXAMPLE 7. In example 6, assume that the utility U is unbounded above.
For each n, let vn be a fortune such that UðvnÞ > 2n. If L0 is the NM lottery
Rath
assu
that assigns fortune vn with probability 22n, then UðL0Þ5 `. If P½H 5
L0� > 0, then P½UðHÞ� will be either infinite or undefined. Clearly, we
cannot allow elements of H to assume NM lotteries like L0. For infinite
spaces, we need further restrictions on H. Assume that there are disjoint
subsets fAng`

n51 of Q such that PðAnÞ5 an > 0 for all n. For each n, let wn

be a fortune such that UðwnÞ > 1=an. Let H0 5o`

n51Anwn. That is, for each
n and each q ∈ An, H0ðqÞ5 wn. Then P½UðH0Þ� >om

n51UðwnÞan > m for
every natural numberm. Hence, P½UðH0Þ�5 `. In order for P½UðHÞ� < `
for all H ∈H, we must prevent H0 and all similar horse lotteries from
being in H. One way to do that would be to restrict H to contain only
simple horse lotteries, namely, those that assume only finitely many NM
lotteries, each of which has finite utility, as in Anscombe and Aumann
ð1963Þ.
er than impose the types of restrictions discussed in example 7, we
me ð4Þ. Seidenfeld, Schervish, and Kadane ð2009Þ discuss other prob-
lems that arise when utilities are unbounded.
One important consequence of ð5Þ is as follows. Let H1, H2 be elements

of H. Then, for every P1; P2 ∈ P,

E
Q

UP1ðq;H1ðqÞÞ dP1ðqÞ < E
Q

UP1ðq;H2ðqÞÞ dP1ðqÞ

if and only if

E
Q

UP2ðq;H1ðqÞÞ dP2ðqÞ < E
Q

UP2ðq;H2ðqÞÞ dP2ðqÞ:

ð6Þ

That is, every probability/utility pair ðP;UPÞ ranks all horse lotteries the
same as every other such pair.
It is easy to see that one can add an arbitrary integrable function of q to a

utility or multiply a utility by a positive constant without changing how the
utility ranks horse lotteries. We will make a standardization of all utility
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functions so that UPðq; status quoÞ5 0, for all q and all P. Hence, status
quo has the state-independent value 0 under all utilities. In ð5Þ, this makes
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t1,2 identically 0 for all P1 and P2.
The scalar factor c1,2 in ð5Þ is an inconvenience that we can do without

if we scale all utilities in a standard way. There are uncountably many ways
that we could scale. The most convenient way is to pick a single P0 and force
UP 5 UP0 � ðdP0=dPÞ for all other P ∈ P. No matter which P0 we choose for
this purpose, we get c1;2 5 1 in ð5Þ for all P1 and P2. Also, we still have
UPðq; status quoÞ5 0 for all P.
With the standardizations above, we see that, for all v ∈R, ð5Þ gives

UP2ðq; vÞ5 UP1ðq; vÞ
dP1

dP2

ðqÞ; ð7Þ

for all P1 and P2. In particular for each q and v, the sign of UPðq; vÞ is the
same for all P. Also, for every horse lottery H and all P1; P2 ∈ P,

E
Q

UP1ðq;HðqÞÞ dP1ðqÞ5 E
Q

UP2ðq;HðqÞÞ dP2ðqÞ: ð8Þ

This is a more convenient ðand seemingly strongerÞ form of ð6Þ.
We make heavy use of a special kind of horse lottery in the rest of this

article.

DEFINITION 2 ðNumeraireÞ. A numeraire is any horse lottery H such that
UPðq;HðqÞÞ has the same sign ðnot 0Þ for all P and all q. If that sign is
The
that
positive, the numeraire is called positive, and if the sign is negative, the
numeraire is called negative. The marginal value of a numeraire H is the
number

cH 5 E
Q

UPðq;HðqÞÞ dPðqÞ; ð9Þ

which is the same for all P according to ð8Þ.
name “numeraire” is commonly used in finance to refer to a currency
counts as a unit for various calculations. In section 3.2, numeraires will
provide a convenient stand-in for currency values when utilities are non-
linear.

LEMMA 1. Let H be a numeraire. Then there is a unique probability/utility
pair ðQ;UQÞ such that H has state-independent value cH under UQ.
Proof. Let ðP;UPÞ be a probability/utility pair. Let Q be the probability
with dQ=dP5 UPð�;HÞ=cH . It follows from ð7Þ that UQðq;HðqÞÞ5 cH

for all q, and H has state-independent values under UQ. If ðQ 0;UQ 0 Þ is
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another probability/utility pair for which H has state-independent values,
then dQ=dQ 0 is constant by ð7Þ, and that constant must be 1. So Q5 Q 0

Alth
one

The
mera
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and UQ 5 UQ 0 . QED

DEFINITION 3. For each numeraire H, we refer to the pair ðQ;UQÞ such that
H has state-independent values under UQ as the probability and utility

corresponding to H.

ough each numeraire has state-independent values under one and only
utility, each utility may have several numeraires that all have state-
independent values. For example, if $1 has state-independent values under
a utility, and if that utility is linear in dollar values, then $2 will have state-
independent values as well. With a general utility, if H has state-independent
values and 0 < a < 1, then the numeraire that gives, in each state q, HðqÞ
with probability a and status quo with probability 12 a also has state-
independent values.
Lemma 1 gives some insight into how to fix the decision making in ex-

amples 1 and 2.

EXAMPLE 8. Reconsider example 1. One unit of currency C1 is a numeraire
as is one unit of C2. They do not have the same corresponding probability/

utility pairs, however. ABayesianwho uses Pr ðq5 1Þ5 Prðq5 2Þ5 0:5
with one of the two currencies cannot use that same probability with the
other currency. The theory does not allow it. Once we introduce general
currencies and exchange rates, we can be more specific about the proba-
bilities that correspond to the two currencies in this example.

minimax decision maker in examples 1 and 2 behaves as if both nu-
ires have state-independent values, but that is impossible. If one of the
numeraires has state-independent values, the other does not. A minimax de-
cision maker needs some way to figure out which numeraire, if either, has
state-independent values. Next, we turn to the general concept of currency
and how it is related to utility in a state-dependent utility representation of
preference.

3. Currency. We give a general definition of currencies, so that we can
make precise the dependence of statistical decisions on currency.

DEFINITION 4. A currency is a set C of horse lotteries in one-to-one cor-
respondence with a subset RC of the reals ðAC :C ↔ RCÞ that satisfies the

following conditions.

• RC contains 0.

• ACðH1Þ < ACðH2Þ if and only if, for every q and every utility U and
every H1; H2 ∈ C, Uðq; H1ðqÞÞ < Uðq; H2ðqÞÞ.
• A21

C ð0Þ is status quo.
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Currencies are defined as changes relative to the status quo and in such a
way that more is always better. The reason for allowing RC to be a subset of
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the reals ðrather than requiring it to be the whole set of realsÞ is primarily as
follows. In order for utility to be bounded when utility is also linear in cur-
rency, we need the set of currency values to be bounded. Definition 5 makes
precise what we mean to say, that utility is linear in a currency.

DEFINITION 5. We say that utility is linear in currency C if, for each P, there
exists WP;C :Q→ R1 such that
Lem

The
the s
UPðq;A21
C ðxÞÞ5WP;CðqÞx; ð10Þ

for all q and all x ∈ RC. Let C stand for the class of all currencies C such
that utility is linear in C.

ma 2, below, shows that ð10Þ holds for a single P5 P0 if and only if it

holds for all P with

WP;CðqÞ5WP0;CðqÞ
dP0

dP
ðqÞ: ð11Þ

3.1. General Results. The first result merely says that currency values
are numeraires, and its proof is straightforward.

PROPOSITION 1. If C is a currency, then every element H of C except status
quo is a numeraire with sign equal to the sign of ACðHÞ.

next result is useful when we try to define exchange rates. It says that
tate-dependent relative values of two numeraires do not depend on the
particular probability/utility pair used to represent preference.

LEMMA 2. Let H1 and H2 be two numeraires. Then, UPðq;H2ðqÞÞ=
UPðq;H1ðqÞÞ is the same for all P ∈ P.

Proof. Let P1 and P2 be arbitrary probabilities in P. It follows from ð7Þ
that
UP2ðq;HðqÞÞ
UP1ðq;HðqÞÞ 5

dP1

dP2

ðqÞ; ð12Þ

for each numeraire H and for all P1, P2, and q. Hence, the ratio on the left
side of ð12Þ does not depend on H. That is, for all P1, P2, H1, H2, and q,

UP2ðq;H1ðqÞÞ
UP1ðq;H1ðqÞÞ 5

UP2ðq;H2ðqÞÞ
UP1ðq;H2ðqÞÞ :
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Rearranging terms gives

3.
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UP1ðq;H2ðqÞÞ
UP1ðq;H1ðqÞÞ 5

UP2ðq;H2ðqÞÞ
UP2ðq;H1ðqÞÞ : ð13Þ

QED

2. Utility Linear in Currency. The next result exhibits a useful re-

lationship between values of a currency that has linear utility values.

LEMMA 3. Let C ∈ C, and for each x ≠ 0, let HC;x 5 A21
C ðxÞ, that is, x units

of currency C. Then, the probability/utility pair ðPx;UPxÞ corresponding to

HC;x is the same for all x ≠ 0, and the state-independent value of x units of
currency C is xcHC;1

.

Proof. Let x ≠ 0. Because HC;x has state-independent values under UPx,
WPx;C is constant. Let P0 ∈ P. From ð10Þ and ð11Þ, we see that Px must

satisfy

dPx

dP0

5
WP0;C

E
Q

WP0;CðqÞ dP0

5
WP0;C

cHC;1

; ð14Þ

which is the same for all x ≠ 0. From ð9Þ, we get that the state-independent
value of HC;x is xcHC;1

. QED

ose that the loss function L in a statistical decision problem will be paid
ðq; qÞ units of currency C when the agent chooses action q and q is the
state of nature. The agent wants to choose q to maximize

E
Q

UPðq; A21
C ð2Lðq; qÞÞÞ dPðqÞ; ð15Þ

for some P ∈ P ðhence, for all P ∈ PÞ. If UPðq; �Þ is not linear in its second
argument, maximizing expected utility will bear no relationship to mini-
mizing expected loss. For this reason, we would like to deal only with cur-
rencies in C. Fortunately, there are many currencies in C. Lemma 4 shows
how to construct an element of C from each pair of positive and negative
numeraires.

LEMMA 4. Suppose that there exist both a positive numeraire and a neg-
ative numeraire. Then there exist ðpossiblyÞ other positive and negative

numeraires H1 and H2 and a currency C such that utility is linear in the
values of C, both H1 and H2 have the same corresponding probability/
utility pairs, and that common probability/utility pair corresponds to every
element of C.
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Proof. Let H 0
2 be a negative numeraire, and let H 0

1 be a positive nu-
meraire. For each probability P ∈ P, let

The
ð196
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mPðqÞ5minfUPðq;H 0
1ðqÞÞ; 2UPðq;H 0

2ðqÞÞg; ð16Þ
which is strictly positive for all q. For each q, let zðqÞ5 2mPðqÞ=
UPðq;H 0

2ðqÞÞ. It follows from ð7Þ that zð�Þ is the same for all P and
that 0 < zðqÞ ≤ 1. Define H2ðqÞ to be H 0

2ðqÞ with probability zðqÞ and
status quo with probability 12 zðqÞ. Similarly, let wðqÞ5 mPðqÞ=
UPðq;H 0

1ðqÞÞ, which is also the same for all P and 0 < wðqÞ ≤ 1. Define
H1ðqÞ to be H 0

1ðqÞ with probability wðqÞ and status quo with probability
12 wðqÞ. By construction, we have

UPðq;H1ðqÞÞ5 2UPðq;H2ðqÞÞ5 mPðqÞ;
hence, H1 and H2 share a common corresponding probability/utility pair
as seen from the proof of lemma 1.

For each 21 ≤ x ≤ 0, let HxðqÞ assign H2ðqÞ with probability2x and
status quo with probability 11 x. For 0 < x ≤ 1, let HxðqÞ assign H1ðqÞ
with probability x and status quo with probability 12 x. Define C 5
fHx:21 ≤ x ≤ 1g. First, note that ACðHxÞ5 x and RC 5 ½21; 1� satisfy
definition 4, so that C is a currency. Also, for 21 ≤ x ≤ 1,

UPðq;A21
C ðxÞÞ5 UPðq;HxðqÞÞ5 mPðqÞx;

for all P and all q. Since mPðqÞ > 0 for all P and all q, WP;CðqÞ5 mPðqÞ
in definition 5. The final two claims follow from lemma 3 and the facts
that H2 5 A21

C ð21Þ and H1 5 A21
C ð1Þ. QED

construction in the proof of lemma 4 was first introduced by Smith
1Þ, who calls it an adaptation from Savage ð1954Þ. Intuitively, the
method of Smith ð1961Þ is to replace x units of a currency C 0 with an NM
lottery that has probability proportional to xj j of receiving ðor payingÞ a
fixed amount and stays in status quo otherwise. The utility of such an NM
lottery is proportional to x, regardless of whether C0 ∈ C. In this way, we
need only evaluate the utility at a single positive currency value and at a
single negative currency value inC 0. Next, we show how to make use of this
idea in decision problems.

3.3. Paying Loss in a Currency. Consider a statistical decision prob-
lem with a set E of available actions and a bounded loss function L:Q�
E→ R. That is, the decision maker’s fortune will change to2Lðq; qÞ ðin
some yet to be named currencyÞ if the chosen action is q and the state of
nature is q. Here, q can be a very general action. For example, q can be a
function of random variables whose values will not be observed until some
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later time, presumably before the loss gets paid. All that is required is that
Lðq; qÞ is known in time for paying the loss and that there is enough mea-
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surability to be able to compute expected values.
Suppose that we want the loss to be paid using a currency C 0. Rather than

paying directly in units of C 0, let H 0
2 and H 0

1 be negative and positive nu-
meraires in C 0, respectively, and construct the currency C in lemma 4. De-
fine xðq; qÞ5 2Lðq; qÞ=M , where M is an upper bound on the loss func-
tion. If the agent chooses action q, change the agent’s fortune to xðq; qÞ
units of currency C. The agent’s expected utility ð15Þ becomes

2
1

M E
Q

Lðq; qÞWP;CðqÞ dPðqÞ: ð17Þ

We are now in position to state the following key result.

THEOREM 1. Suppose either that we construct a currency C as in lemma 4 or
that utility is already linear in an existing currency C. Suppose also that a
If w
the q
decision problem has a loss function Lðq; qÞ that is bounded by 1. This
means that the agent’s fortune moves to2Lðq; qÞ units of currency C if
the agent chooses action q and the state of nature is q. Then the agent
maximizes expected utility by minimizing expected loss using the prob-
ability Q that corresponds to C.

Proof. If the currency C is constructed as in lemma 4, let Q be the
probability corresponding to H2. Then for each P ∈ P, dQ=dPðqÞ is a

positive constant times WP;CðqÞ, and ð17Þ is a positive constant times

2E
Q

Lðq; qÞ dQðqÞ; ð18Þ

which is maximized by minimizing expected loss under Q. If utility was
already linear in some currency C, then ð15Þ is

2E
Q

Lðq; qÞWP;CðqÞ dPðqÞ; ð19Þ

which is a positive constant multiple of ð18Þ. Hence, maximizing expected
utility is the same as minimizing expected loss under Q. QED

e contemplate different choices for the currency in which the loss is paid,
uestion arises as to whether some currencies are better for a decision
problem than others. We turn to that question in section 6.3. In order to
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choose between different currencies, we need a scale on which to compare
them. The natural comparison between currencies is their exchange rate,

520 MARK J. SCHERVISH ET AL.
which we consider in section 4.

4. Exchange Rates. An obvious problem with exchange rates, in the pres-
ence of nonlinear utility, is as follows. Let C1 and C2 be currencies. Even if
one unit of C2 is worth x units of C1, it does not necessarily follow that two
units of C2 are worth 2x units of C1. Hence, the exchange rate is difficult to
define in a manner that matches how it is used in the foreign exchange
market, unless utility is linear in both currencies. We begin the discussion of
exchange rates by comparing two numeraires and then extend to currencies
in which utility is linear.

DEFINITION 6 ðExchange RatesÞ. Let H1 and H2 be numeraires. The con-
ditional exchange rate from H1 to H2 is the function EH1;H2

:Q→ R equal to
O

the ratio of their state-dependent values, namely,

EH1;H2
ðqÞ5 UPðq;H2ðqÞÞ

UPðq;H1ðqÞÞ ; ð20Þ

which is the same for all P according to lemma 2. The marginal exchange
rate from H1 to H2 is the ratio of their marginal values MH1;H2

5 cH2
=cH1

.

ne can think of the marginal exchange rate between two numeraires as

their relative values at the present time. In general, when the loss function in
a decision problem will be paid at some future time, the relative values of
various numeraires might change between now and when the loss is paid. In
our discussion of decision problems, we think of the conditional exchange
rates between numeraires as their future exchange rates at the time when the
loss will be paid.
Notice that EH2;H1

5 1=EH1;H2
and MH2;H1

5 1=MH1;H2
. If H3 is a third nu-

meraire, then EH1;H3
5 EH1;H2

EH2;H3
and MH1;H3

5MH1;H2
MH2;H3

, as one would
expect of exchange rates. Next, we present some natural relationships be-
tween conditional and marginal exchange rates.

LEMMA 5. Let H1 and H2 be numeraires with corresponding probability/
utility pairs ðP1;UP1Þ and ðP2;UP2Þ. Then
EH1;H2
5

dP2

dP1

MH1;H2
: ð21Þ

Proof. Let ðP;UPÞ be a probability/utility pair. From the construction in
the proof of lemma 1, we see that dPi=dP5 UPð�;HiÞ=cHi for i5 1; 2. It
follows that
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dP2
5

dP2=dP
5

UPð�;H2ÞcH1 5
EH1;H2 ;

In w
the m
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dP1 dP1=dP UPð�;H1ÞcH2
MH1;H2

hence, ð21Þ holds. QED
LEMMA 6. Under the conditions of lemma 5, MH1;H2

5 P1ðEH1;H2
Þ.
Proof. From lemma 5, � �

P1ðEH1;H2

Þ5 P1

dP2

dP1

MH1;H2
5MH1;H2

: ð22Þ

QED

ords, lemma 6 says that the marginal exchange rate from H1 to H2 is
ean of the conditional exchange rate with respect to the probability
corresponding to the utility that gives H1 state-independent values.
The remaining results in this section concern the collection C of cur-

rencies such that utility is linear in each of the currencies. In the notation of
lemma 3, the conditional exchange rate between x units of two different
currencies C1 and C2 in C is

EHC1 ; x
;HC2 ; x

ðqÞ5 UPðq;HC2; xðqÞÞ
UPðq;HC1; xðqÞÞ

5
WP;C2

ðqÞ
WP;C1

ðqÞ ; ð23Þ

for all x ≠ 0. That is, as long as we compare numeraires consisting of the
same numerical amounts x of currency, the conditional exchange rate does
not depend on the common amount x. Lemma 2 shows that EHC1 ; x

;HC2 ; x
does

not depend on P, which fact also follows quickly from ð11Þ. Use the sym-
bol EC1;C2

ðqÞ to denote the conditional exchange rate in ð23Þ. Let MC1;C2
5

cHC2 ;1
=cHC1 ;1

stand for the marginal exchange rate from C1 to C2.
In the linear case, exchange rates have interpretations much like what we

see in foreign exchange. The marginal exchange rateMC1;C2
is the number of

units of C1 that has the same value as one unit of C2 at the present time. The
conditional exchange rate has the same interpretation state by state.
We are now in a position to see how the Bayesian in examples 1 and 2 can

clear up the inconsistent choices that were made.

EXAMPLE 9. Reconsider examples 1 and 2. We have not yet given enough
information to determine the probabilities that correspond to each of the

two currencies. But we know that they are not the same. First suppose that
P1ðf1gÞ5 P1ðf2gÞ5 0:5 is the probability that corresponds to C1. Let P2

be the probability that corresponds to C2. According to lemma 5,

dP2

dP1

5
EC1;C2

MC1;C2

:
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In example 2, we specified EC1;C2
ð1Þ5 0:5 and EC1;C2

ð2Þ5 2. This makes
MC ;C 5 0:5 � 0:51 0:5 � 25 1:25, and

Usin
exam
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1 2

dP2

dP1

ðqÞ5 1

1:25
�

0:5 if q5 1;

2 if q5 2:
5

0:4 if q5 1;

1:6 if q5 2:

((

So P2ðf1gÞ5 0:5 � 0:45 0:2 and P2ðf2gÞ5 0:5 � 1:65 0:8.

g currency C1, the expected losses for actions a and b are as given in
ple 1, namely, 1.25 and 1 respectively, and the agent chooses b. Using
currency C2, the expected loss for action a is again 1, while the expected
loss for action b is 2 � 0:21 0:5 � 0:85 0:8, and the agent still chooses b,
as expected.
For completeness, suppose next that the probability corresponding to C2

is Q2ðf1gÞ5 Q2ðf2gÞ5 0:5, which happens to be the same as P1 above.
Let Q1 be the probability corresponding to C1. The conditional exchange
rate that we need now is EC2;C1

5 1=EC1;C2
; that is, EC2;C1

ð1Þ5 2, EC2;C1
ð2Þ5

0:5. The marginal exchange rate is nowMC2;C1
5 0:5 � 21 0:5 � 0:55 1:25,

and

dQ1

dQ2

5
EC2;C1

MC2;C1

5
1:6 if q5 1;

0:4 if q5 2:

(

So,Q1ðf1gÞ5 0:5 � 1:65 0:8 and Q1ðf2gÞ5 0:5 � 0:45 0:2. Using cur-
rency C1, the expected losses for actions a and b are 0:5 � 0:81 2 � 0:2
5 0:8 and 1, respectively. The agent chooses a. Using currency C2, the ex-
pected losses are 1 and 1.25 ðas in example 2Þ, and the agent chooses a
again, as expected. We do not know how the minimax decision maker can
resolve the inconsistent choices in examples 1 and 2, and we leave it as an
open question.

5. When Currency Does Not Matter. There are cases in which the cur-
rency used for charging a loss does not affect the decision.

LEMMA 7. Assume the conditions of theorem 1. Let C1 and C2 be two cur-
rencies in C with corresponding probability/utility pairs ðP1;UP1Þ and

ðP2;UP2Þ and with a marginal exchange rate equal to 1. Then, the following
statements are equivalent:

• for each q, the two expected utilities from paying the loss in units of C1
and C2 are equal,

• Lð�; qÞ is uncorrelated with EC1;C2

under P1 for all q,
• Lð�; qÞ is uncorrelated with EC2;C1

under P2 for all q.
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Proof. First, we show that the second bullet implies the first and third
bullets. Suppose that Lð�; qÞ is uncorrelated with EC ;C under P1 for all q.
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1 2

According to lemma 5, dP2=dP1 5 EC1;C2
MC2;C1

, so Lð�; qÞ is uncorrelated
Th
with dP2=dP1 under P1. Then, for each q,

P2ðLð�; qÞÞ5 E
Q

Lðq; qÞdP2ðqÞ5 E
Q

Lðq; qÞ dP2

dP1

ðqÞ dP1ðqÞ

5 P1ðLð�; qÞÞP1

dP2

dP1

� �
5 P1ðLð�; qÞÞ;

where the third equality follows from Lð�; qÞ and dP2=dP1 being uncor-
related under P1. This establishes the first bullet.

Next, we show that Lð�; qÞ is uncorrelated with EC2;C1
under P2, which

is equivalent to showing that Lð�; qÞ is uncorrelated with dP1=dP2 under
P2. We have

P2 Lð�; qÞ dP1

dP2

� �
5 P1ðLð�; qÞÞ5 P2ðLð�; qÞÞ5 P2ðLð�; qÞÞP2

dP1

dP2

� �
;

which is the third bullet. That the third bullet implies the first two follows
by repeating the above argument with subscripts 1 and 2 switched.

To complete the proof, it suffices to show that the first bullet implies
the second bullet. Suppose that P2ðLð�; qÞÞ5 P1ðLð�; qÞÞ for all q. Since
EC1;C2

is a constant times dP2=dP1, we need to show that

P1 Lð�; qÞ dP2

dP1

� �
5 P1ðLð�; qÞÞP1

dP2

dP1

� �
: ð24Þ

The left side of ð24Þ is P2ðLð�; qÞÞ, and the right side is P1ðLð�; qÞÞ, which
are equal. QED

e ability to apply lemma 7 depends on how complicated the loss func-

tion is and how complicated the decision rules q ∈ E are. If all of the random
variables that go into determining the loss ðand qÞ are independent of EC1;C2

under P1, then Lð�; qÞ is uncorrelated with EC1;C2
under P1 for all q, and the

lemma says that all actions will be ranked the same, regardless of which
currency ðC1 or C2Þ is used to pay the loss. Put less technically, if the decision
problem is independent of the exchange rate, then it does not matter what
currency is used for charging the loss.

6. Elicitation via Proper Scoring Rules

6.1. Elicitation as a Decision Problem. Proper scoring rules were
designed to give experts the proper incentives for providing their subjective
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probabilities and expected values when being elicited. Being scored by a
proper scoring rule is a special case of a statistical decision problem.
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DEFINITION 7 ðProper Scoring RuleÞ. Let R be a set of real numbers and let
ðX ; DÞ be a measurable space. Let g :X � R→ ½0; `� be a function such
Defi
then
that gðx, qÞ is measurable in x for all q. For each probability Q over Q and
each bounded random variable X, let QðX Þ denote the mean of X. Suppose
that, for every Q and every X, Q½gðX ; qÞ� is minimized as a function of q
at q5 QðX Þ. Then g is a proper scoring rule. If, for every Q, q5 QðX Þ
is the unique minimizer, then g is strictly proper.

nition 7 could be extended to allow unbounded random variables, but
one has to deal with the possibility of infinite or undefined means. Al-
though the definition of proper scoring rule above is widely accepted, there
is some controversy about what should be called strictly proper. Some au-
thors reserve the qualification “strictly proper” for scoring rules such that
are designed to elicit an entire distribution. That is, R in definition 7 is a set
of probability measures, and g is strictly proper if and only if q5 Q is the
unique minimizer of Q½gðX; qÞ� for every Q ∈ R. Gneiting ð2011aÞ calls a
scoring rule strictly consistent if it satisfies the final clause of definition 7.
For the remainder of this article, we will continue to follow definition 7,
which matches the usage in Gneiting ð2011bÞ. The two definitions agree
when R is a set of Bernoulli distributions.
Suppose that we wish to learn a particular agent’s subjective expectation

for a random variable X ðpossibly the indicator of an eventÞ. Let g be a
strictly proper scoring rule. We can create a statistical decision problem with
loss function Lðq; qÞ5 gðX ðqÞ; qÞ. If we were able to convince the agent
to provide us with the value q that minimizes ∫QgðX ðqÞ; qÞ dPðqÞ, where
P is the agent’s subjective probability distribution, we would learn PðX Þ,
according to the definition of proper scoring rule. But theorem 1 says that
the solution to a statistical decision problem depends on which currency is
used for charging the loss ðscoreÞ. If the agent is being given the proper
incentive for providing his or her subjective probability of an event, then
how can the elicited probability depend on which currency is being used for
scoring?
The answer is straightforward. Minimizing expected score is the same as

maximizing expected utility, only when the probability/utility pair corre-
sponds to the currency used for scoring. Using different currencies creates
different decision problems for the agent. These different decision problems
can have different solutions. The confusion arises from mistakenly treating
the scores as pure ðunit-lessÞ numbers, regardless of how their values change
from state to state.
Chapter 6 of Degroot ð1970Þ constructs a unique subjective probability

P without reference to changes in an agent’s fortunes. Then chapter 7 of
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Degroot ð1970Þ goes on to construct a state-independent utility. A more
complicated theory of Karni, Schmeidler, and Vind ð1983Þ and Schervish,
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Kadane, and Seidenfeld ð1991Þ allows the construction of a unique prob-
ability and state-dependent utility ðP;UPÞ. Suppose that an agent believes
that he or she has constructed a unique probability and utility ðP;UPÞ by
one of these methods or by some other method. If we attempt to elicit PðX Þ
from this agent using a strictly proper scoring rule, we will not be suc-
cessful, unless we already know enough aboutUP to choose a currency with
state-independent values.
Lemma 7 has a simpler form when restricted to elicitation via proper

scoring rules.

PROPOSITION 2. Let C1 and C2 be two currencies with corresponding
probability/utility pairs ðP1;UP1Þ and ðP2;UP2Þ. Then the following items

are equivalent:

• P1ðX Þ5 P2ðX Þ,

• X is uncorrelated with EC ;C under P1,
1 2

• X is uncorrelated with EC2;C1
under P2.

The proof of proposition 2 is similar to that of lemma 7 and will not be
given.
One can elicit other aspects of a probability distribution, such as quantiles,

using other loss functions. For example, if Pð Xj jÞ < `, then ∫Q X ðqÞ2j
qjdPðqÞ is minimized over q by setting q equal to any median of the dis-
tribution of X under P. For more general quantiles, one can use loss func-
tions of the form

Lðq; qÞ5 a½X ðqÞ2 q� if X ðqÞ > q;

b½q2 X ðqÞ� if X ðqÞ ≤ q;

(
ð25Þ

where a; b > 0. In this case, ∫Q Lðq; qÞ dPðqÞ is minimized by setting q
equal to any a=ða1 bÞ quantile of the distribution of X under P. In such a
decision problem, if the loss is settled in a currency, the quantile elicited will
be from the probability corresponding to the currency.

6.2. Strategic Choices in Elicitation. De Finetti ð1974, 93Þ noticed a
shortcoming of the use of gambles for elicitation and preferred to use a
proper scoring rule. When an agent is gambling, there is an opponent who
gets to choose which side of the gamble to take. Suppose that the agent has
reason to believe that the opponent has a higher mean for the random
variable of interest than does the agent. Then the agent will have an in-
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centive to specify a slightly higher value than his or her true mean. Here is
an example.
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EXAMPLE 10. In the gambling formulation of elicitation, the agent is asked

to specify the mean m of a random variable X, with the understanding that

Strat
of ga
the agent then feels that it is fair to receive a½X ðqÞ2 m� in state q, where
the real scalar a is chosen by an opponent. For example, suppose that the
agent thinks that m5 0:6 meets the above condition, but the agent is
certain that the opponent would choose m ≥ 0:8 if it were up to the op-
ponent. So, the agent feels that ½X ðqÞ2 0:7� would be advantageous to
receive, as it is 0.1 higher than the fair value of ½X ðqÞ2 0:6�. Also, the
opponent ðin the opinion of the agentÞ would think it is advantageous to
receive 2½X ðqÞ 20:7�, as it is 0.1 higher than the fair 2 ½X ðqÞ2 0:8�. In
this case, the agent has an incentive to specify a value of m that is higher
than his or her mean of X; hence, the gambling formulation would fail to
provide a proper elicitation in this case.

egic considerations of the sort in example 10 can undermine the value

mbling as an elicitation method. Scoring rules do not involve an oppo-
nent who has any decisions that should influence the agent. For this reason,
de Finetti believed that scoring rules should be preferred to gambles as a
means of elicitation. Using gambles to elicit probabilities in finite spaces also
leads to the same dependence on currency that we noticed above, as shown
bySchervish, Seidenfeld, andKadane ð1990Þ. In this article,wehave extended
the results of Schervish et al. ð1990Þ to proper scoring rules as well as to all
statistical decision problems, even in general spaces. Next, we show that a
different set of strategic considerations arises when using scoring rules to elicit
probabilities.

6.3. Strategic Choice of Currency. Suppose that we wish to elicit the
mean of a random variable from an agent who is given the choice of cur-
rency in which to be scored before announcing the mean. Are some cur-
rency choices better than others? Without further conditions, the answer is
an obvious yes. Surely it is better to pay a score of x units in pennies than to
pay x units in dollars. To avoid such trivial answers, we need to standardize
currencies somehow and compare only those currencies that are of the same
size according to the standardization. But even that appears not to be
enough to prevent strategic choice of currency.

EXAMPLE 11. Let Q5 ð0; 1Þ. Suppose that we are trying to elicit the
probability of the event F 5 ð0; 1=2Þ. That is, X ðqÞ is the indicator of F.

Suppose that we are using Brier score, gðx; qÞ5 ðx2 qÞ2. Suppose also
that we assume that utility is linear in all of the currencies that we use in
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this example. Let P1 be the probability corresponding to a currency C1

having state-independent values, and let WP ;C 5 1. Suppose that P1 is

Ea
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1 1

the uniform distribution on ð0, 1Þ. If the agent chooses to be scored
in currency C1, then q5 P1ðFÞ5 1=2, and the expected Brier score is
VarP1ðX Þ5 1=4.

ch alternative currency C2 corresponds to a conditional exchange rate

EC1;C2

ð�Þ5WP1;C2
ð�Þ that is integrable with respect to P1. The corresponding

probability P2 that gives currency C2 state-independent values has dP2=dP1

5WP1;C2
=c, where c5 P1½WP1;C2

�5MC1;C2
is the marginal exchange rate. If

the agent chooses to be scored in currency C2, the probability is

P2ðFÞ5 E1=2

0

WP1;C2
ðqÞ

c
dq:

For example, suppose that we consider a currency C2 with WP1;C2
ðqÞ5 2q

5 dP2=dP1 so that c5 1. Then P2ðFÞ5 1=45 q, and the expected Brier
score under P2 is VarP2ðX Þ5 3=16. Since the marginal exchange rate is 1,
paying 3/16 units of C2 is preferred to paying 1/2 unit of C1.
Taking the above comparison between C1 and C2 further, let Cn be

a currency with WP1;CnðqÞ5 nqn21. Then PnðFÞ5 1=2n, MC1;Cn 5 1, and
VarPnðX Þ5 ð12 22nÞ=2n. The differences between the expected scores in
currencies C1 and Cn cannot be explained by the marginal exchange rate
between the two currencies since the marginal exchange rates are all 1.
What is happening is that Cn is essentially worthless ðwhen measured in
units of C1Þ if F occurs. The agent announces a very small probability of F
and agrees to pay a large score in currency Cn if F occurs. But such a large
score is not worth much in other currencies. If FC occurs, making Cn more
valuable relative to other currencies, the agent does not have to pay very
much in units of Cn because PnðFCÞ is close to 1.
The same strategic consideration, that is, choice of currency, does not

arise when using gambles for elicitation. In that formulation, the gambles to
which an agent commits are all fair, regardless of in what currency they are
settled. Without a secondary criterion with which to distinguish fair gam-
bles, there is no way to choose among them.

6.4. Choice of Scoring Rule. Another strategic consideration arises if
the agent is given the choice of which scoring rule will be used to score the
elicitation. Clearly, scaling a scoring rule down is advantageous to the agent
being scored. In order to compare scoring rules that are comparable in terms
of the payout, we need an appropriate standardization. One naive standard-
ization is to scale by supx;q gðx; qÞ5 1.
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For simplicity, consider the case in which X is the indicator of some
event. According to theorem 4.2 of Schervish ð1989Þ, every bounded left-

528 MARK J. SCHERVISH ET AL.
continuous strictly proper scoring rule with gðx; xÞ5 0 for x ∈ f0; 1g has
the form

gðx; qÞ5
E

½0;qÞ
pdlðpÞ if x5 0;

E
½q;1Þ

ð12 pÞ dlðpÞ if x5 1;

8>>><
>>>:

ð26Þ

for some measure l on ½0, 1� that assigns a positive measure to every
nondegenerate interval. In order for supx;q gðx; qÞ5 1, we need l to be two
times a probability that has mean of 1/2. By choosing l to put as much of
its mass as possible near the two extreme values of 0 and 1, the expected
score can be made as close as one likes to 0, no matter what q happens to
be. Hence, the agent would like to be scored by a rule corresponding to such
a l, regardless of the currency.
An alternative normalization of scoring rules is to use the maximin ex-

pected score. That is, normalize by supq½qgð1; qÞ1 ð12 qÞgð0; qÞ�. In this
case, the expected score will lie on a strictly concave curve m on ½0, 1�,
with a maximum value of 1 and satisfying mð0Þ5 mð1Þ5 0. If mðq0Þ5 1,
then the curve m lies strictly above the piecewise linear function f ðqÞ5
minfð12 q0Þq; ð12 qÞq0g ðexcept for q ∈ f0; q0; 1g, where f ðqÞ5 mðqÞÞ.
We can make mðqÞ arbitrarily close to f ðqÞ, by making l concentrate its
mass arbitrarily close to q0. In such a case, if the agent’s subjective prob-
ability of the event being forecast is q, then the best expected score will be
approximately f ðqÞ, which will be minimized by choosing l so that q0 5 1
if q < 1=2 and q0 5 0 if q > 1=2. If q5 1=2, either q0 5 0 or q0 5 1 will do
equally well. If the agent also gets to choose the currency along with the
scoring rule, he or she would choose a currency such that q is as close to 0
or 1 as is feasible and match it with a scoring rule that made the optimal ex-
pected score as close as possible to 0 near that q. In the gambling frame-
work, there is no obvious strategic counterpart to the choice of the scoring
rule on the part of the agent being scored.

6.5. Converting between Currencies. Our results show that a mean
elicited by a scoring rule comes from the probability P associated with the
utilityUP that gives state-independent values to the currency used for elic-
iting. In general, it is not possible to infer QðX Þ from PðX Þ, even if we
know the conditional exchange rate between the two currencies CP and CQ
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that have state-independent values under P and Q, respectively. Even when
X is the indicator of an event F, we have
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QðFÞ5 E
F

dQ

dP
ðqÞ dPðqÞ:

It is true that

dQ

dP
5

ECP;CQ

MCP ;CQ

; ð27Þ

but we still need to know P for all subsets of the event F, not just PðFÞ
ðunless ECP ;CQ

is constant over F or FCÞ. In general,

QðX Þ5 P X
dQ

dP

� �
5

PðXECP ;CQ
Þ

MCP ;CQ

; ð28Þ

which can also be written as PðXECP ;CQ
Þ5 QðX ÞPðECP ;CQ

Þ.

6.6. Finite State Spaces. In finite state spaces, we can make a bit more
progress.LetQ5 fQ1; : : : ; Qng. Schervish et al. ð1990Þ dealt with this case,
and the events whose probabilities were being elicited ðvia gamblesÞ were
singletonsfq1g; : : : ; fqng. In such cases, ECP ;CQ

is constant on singletons;
hence, we can convert probabilities of singletons from one currency to the
next if both the conditional exchange rate and the marginal exchange rate
are known. If the probabilities of all singletons are elicited in the same cur-
rency, then the marginal exchange rate can be computed from the conditional
exchange rate. If the probability of each singleton is elicited in a ðpossiblyÞ
different currency, one can set up a system of equations whose solution will
give the necessarymarginal exchange rates.
To be specific, suppose that the probability of fqig is elicited in currency

Ci for i5 1; : : : ; n with corresponding probabilities P1; : : : ; Pn. Let C0 be
a currency with corresponding probability P0. We assume that we know
EC0;Ci for all i, even if we do not know MC0;Ci. So, we elicit PiðfqigÞ5 pi

for i5 1; : : : ; n. As in ð27Þ,

P0ðfqigÞ5 PiðfqigÞECi;C0
ðqiÞ

MCi;C0

5 pi

MC0;Ci

EC0;CiðqiÞ : ð29Þ

For each i, we can set up an equation giving the value of MC0;Ci . According
to ð22Þ and then ð29Þ,

MC0;Ci 5 o
n

j51

P0ðfqjgÞEC0;CjðqjÞ5 o
n

j51

pjMC0;Cj : ð30Þ
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For i5 1; : : : ; n, ð30Þ gives us n linear equations in ðat mostÞ n unknowns
M for i5 1; : : : ; n. The equations are linearly dependent, and every
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C0;Ci

scalar multiple of each solution is also a solution. The appropriate scaling
can be determined from the fact that on

i51P0ðfqigÞ5 1. If two or more
events were elicited in the same currency, there will be further linear de-
pendence, which could be removed by using only one equation for each
unique currency.

7. Discussion. This article explores implications of the fact that preferences
between Anscombe and Aumann ð1963Þ style horse lotteries cannot reveal
a unique probability and state-independent utility in the presence of nu-
meraires with state-dependent values. The most that one can determine is a
state-dependent expected utility representation in the form of definition 1.
Even an agent who believes that they have a unique probability and state-
dependent utility ðP;UPÞ cannot ignore the units in which losses are paid in
a statistical decision problem. The formal solution to a decision problem as
if the losses were unit-less pure numbers will not match the agent’s solution,
unless the loss is paid in a currency that has state-independent values under
UP.
Schervish et al. ð1990Þ considered elicitation via gambles, but the current

article shows that general statistical decision problems suffer from possible
state dependence of the currency used for charging the loss. When one pays
the loss in a particular currency C, then a Bayesian will solve the decision
problem using the probability Q, where ðQ;UQÞ is the particular state-
dependent utility representation of the agent’s preferences such that cur-
rency C has state-independent values under UQ. If one changes the currency
to C 0 and ðQ 0;UQ 0 Þ is an equivalent state-dependent utility for which C 0 has
state-independent values under UQ0, then the agent will solve the decision
problem using probability Q 0. Lemma 7 and proposition 2 give conditions
under which the solutions to various decision problems will not depend on
the currency in which the loss is paid.
We examine elicitation of subjective probability in detail because the

implications of state-dependent utility are so striking for elicitation. Under
some restrictive conditions, one can convert means elicited in one currency
to means that would have been elicited in another currency. But, one cannot
elicit an agent’s “true subjective probability” ðwhatever that meansÞ unless
that probability happens to correspond to the state-dependent utility that
gives state-independent values to the currency in which one does the elic-
itation. If the random variable whose prevision is being elicited is uncor-
related with the conditional exchange rate between two currencies, then the
same prevision will be elicited using either currency. If one is to take se-
riously the idea that elicited probabilities stand for something that can be
used for statistical inference, one needs to be confident that those probabil-
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ities were derived in a manner consistent with their intended use. If it is
possible to constrain the effects of the decisions so that they do not involve
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fortunes whose relative values vary from state to state, then one can feel safe
that probabilities elicited using such fortunes as currency values will be
meaningful. The challenge is making sure that the decision problem is so
constrained.
Additional work is needed in order to identify the implications of state

dependence on decision problems with multiple decision points. For ex-
ample, an agent may get the opportunity to revise a decision after learning
additional information. The agent may be asked to make several decisions
at different times. It is well known that exchange rates change over time,
and it makes sense to model exchange rates as stochastic processes. In this
article, we have considered only two times, namely, when the decision is
made and when the loss is paid. We also believe that state dependence has
implications for financial product pricing, especially in the foreign exchange
market.
Finally, we have presented some results concerning strategic choices that

an agentmightmakewhen being scored, butwe have not yet studied strategic
choices that are available to the elicitor who is requesting the elicited pre-
vision. Such a study could proceed if we specified how the elicited prevision
was going to affect the elicitor as well as his or her state-dependent utility
representation and his or her opinion of the agent. This problem is left for
future study.
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